Performance Comparison of Noise Classification Using Intelligent Networks

نویسنده

  • T.Meera Devi
چکیده

The performance of speech-processing systems such as speech coding, speech recognition has been degraded by background environmental noises such as car, bus, babble, factory, helicopter and street noise. Noise classification is essential to enhance the performance. A major step in the design of a signal classification system is the selection of a good set of features that are capable of separating the signals in the feature space. In order to reduce the effect of environmental noises on speech processing tasks, noise classification is required. In general, classification of noise module achieves an improvement in the performance of a system operating in the presence of background noise by dynamically adapting the processing algorithms to the particular type of environmental noise. In this proposed work fuzzy ARTMAP network and modified fuzzy ARTMAP network are used for classification of background noise signals. Further these results are compared with back propagation networks and with Radial Basis Function Network(RBFN). Our empirical results show that the fuzzy networks have robust features in distinguishing the different classes of noises.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intelligent and Online Evaluation of Diabetes using Wireless Sensor Networks and Support Vector Machines Algorithm

Objective: International Diabetes Organization estimates that there are 285 million people worldwide who suffer from diabetes, and this figure is expected to increase to 450 million in next 20 years. According to statistics issued by the World Health Organization, diabetes is considered among ten leading causes of death in world and its prevalence in the population is growing.This paper deals w...

متن کامل

Porosity classification from thin sections using image analysis and neural networks including shallow and deep learning in Jahrum formation

The porosity within a reservoir rock is a basic parameter for the reservoir characterization. The present paper introduces two intelligent models for identification of the porosity types using image analysis. For this aim, firstly, thirteen geometrical parameters of pores of each image were extracted using the image analysis techniques. The extracted features and their corresponding pore types ...

متن کامل

Classification of ECG signals using Hermite functions and MLP neural networks

Classification of heart arrhythmia is an important step in developing devices for monitoring the health of individuals. This paper proposes a three module system for classification of electrocardiogram (ECG) beats. These modules are: denoising module, feature extraction module and a classification module. In the first module the stationary wavelet transform (SWF) is used for noise reduction of ...

متن کامل

Noise Diagnostics of Scooter Faults by Using MPEG-7 Audio Features and Intelligent Classification Techniques

A scooter fault diagnostic system that makes use of feature extraction and intelligent classification algorithms is presented in this paper. Sound features based on MPEG (Moving Picture Experts Group)-7 coding standard and several other features in the time and frequency domains are extracted from noise data and preprocessed prior to classification. Classification algorithms including the Neare...

متن کامل

The Application of Multi-Layer Artificial Neural Networks in Speckle Reduction (Methodology)

Optical Coherence Tomography (OCT) uses the spatial and temporal coherence properties of optical waves backscattered from a tissue sample to form an image. An inherent characteristic of coherent imaging is the presence of speckle noise. In this study we use a new ensemble framework which is a combination of several Multi-Layer Perceptron (MLP) neural networks to denoise OCT images. The noise is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010